Optically-controlled extinction ratio and Q-factor tunable silicon microring resonators based on optical forces
نویسندگان
چکیده
منابع مشابه
Electro-optically tunable microring resonators on lithium niobate.
Electro-optical tuning of a microring resonator fabricated on lithium niobate (LiNbO3) is presented. The device structure, including microring resonator and couplers, is designed in detail and is produced by titanium diffusion on the wet-etched LiNbO3 ridge surface. The resonance wavelengths for TM and TE polarizations can be tuned by electro-optic effect. The output characteristics of through ...
متن کاملTunable Q-factor silicon microring resonators for ultra-low power parametric processes.
A compact silicon ring resonator is demonstrated that allows simple electrical tuning of the ring coupling coefficient and Q-factor and therefore the resonant enhancement of on-chip nonlinear optical processes. Fabrication-induced variation in designed coupling fraction, crucial in the resonator performance, can be overcome using this post-fabrication trimming technique. Tuning of the microring...
متن کاملWide-bandwidth continuously tunable optical delay line using silicon microring resonators.
We demonstrate a distortion free tunable optical delay as long as 135 ps with a 10 GHz bandwidth using thermally tuned silicon microring resonators in the novel balanced configuration. The device is simple, easy to control and compact measuring only 30 µm wide by 250 µm long.
متن کاملIntegrated optical add-drop multiplexer using thermally tunable microring resonators
We present a four channel optical add-drop multiplexer based on vertically coupled microring resonators fabricated in Si3N4/SiO2. The device with a Manhattan-like geometry has a footprint of 0.25 mm and can find application in metro-networks. The individual micro-resonators have a 50 μm radius and are thermally tunable over a 4 nm range. The maximum power consumption per ring is 0.5 W. Measurem...
متن کاملPicosecond all-optical switching in hydrogenated amorphous silicon microring resonators.
We utilize cross-phase modulation to observe all-optical switching in microring resonators fabricated with hydrogenated amorphous silicon (a-Si:H). Using 2.7-ps pulses from a mode-locked fiber laser in the telecom C-band, we observe optical switching of a cw telecom-band probe with full-width at half-maximum switching times of 14.8 ps, using approximately 720 fJ of energy deposited in the micro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2014
ISSN: 2045-2322
DOI: 10.1038/srep05409